Primary afferent and spinal cord expression of gastrin-releasing peptide: message, protein, and antibody concerns.
نویسندگان
چکیده
There is continuing controversy relating to the primary afferent neurotransmitter that conveys itch signals to the spinal cord. Here, we investigated the DRG and spinal cord expression of the putative primary afferent-derived "itch" neurotransmitter, gastrin-releasing peptide (GRP). Using ISH, qPCR, and immunohistochemistry, we conclude that GRP is expressed abundantly in spinal cord, but not in DRG neurons. Titration of the most commonly used GRP antiserum in tissues from wild-type and GRP mutant mice indicates that the antiserum is only selective for GRP at high dilutions. Paralleling these observations, we found that a GRPeGFP transgenic reporter mouse has abundant expression in superficial dorsal horn neurons, but not in the DRG. In contrast to previous studies, neither dorsal rhizotomy nor an intrathecal injection of capsaicin, which completely eliminated spinal cord TRPV1-immunoreactive terminals, altered dorsal horn GRP immunoreactivity. Unexpectedly, however, peripheral nerve injury induced significant GRP expression in a heterogeneous population of DRG neurons. Finally, dual labeling and retrograde tracing studies showed that GRP-expressing neurons of the superficial dorsal horn are predominantly interneurons, that a small number coexpress protein kinase C gamma (PKCγ), but that none coexpress the GRP receptor (GRPR). Our studies support the view that pruritogens engage spinal cord "itch" circuits via excitatory superficial dorsal horn interneurons that express GRP and that likely target GRPR-expressing interneurons. The fact that peripheral nerve injury induced de novo GRP expression in DRG neurons points to a novel contribution of this peptide to pruritoceptive processing in neuropathic itch conditions.
منابع مشابه
Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord
There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac...
متن کاملExpression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn
BACKGROUND Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antib...
متن کاملRoles for substance P and gastrin-releasing peptide as neurotransmitters released by primary afferent pruriceptors.
Recent studies support roles for neurokinin-1 (NK-1) and gastrin-releasing peptide (GRP) receptor-expressing spinal neurons in itch. We presently investigated expression of substance P (SP) and GRP in pruritogen-responsive primary sensory neurons and roles for these neuropeptides in itch signaling. Responses of dorsal root ganglion (DRG) cells to various pruritogens were observed by calcium ima...
متن کاملGlutamate acts as a neurotransmitter for gastrin releasing peptide-sensitive and insensitive itch-related synaptic transmission in mammalian spinal cord
Itch sensation is one of the major sensory experiences of human and animals. Recent studies have proposed that gastrin releasing peptide (GRP) is a key neurotransmitter for itch in spinal cord. However, no direct evidence is available to indicate that GRP actually mediate responses between primary afferent fibers and dorsal horn neurons. Here we performed integrative neurobiological experiments...
متن کاملItch-associated peptides: RNA-Seq and bioinformatic analysis of natriuretic precursor peptide B and gastrin releasing peptide in dorsal root and trigeminal ganglia, and the spinal cord
BACKGROUND Three neuropeptides, gastrin releasing peptide (GRP), natriuritic precursor peptide B (NPPB), and neuromedin B (NMB) have been proposed to play roles in itch sensation. However, the tissues in which these peptides are expressed and their positions in the itch circuit has recently become the subject of debate. Here we used next-gen RNA-Seq to examine the expression of transcripts codi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2015